Applied Stochastic Analysis

Bangyan Liao liaobangyan@westlake.edu.cn

Oct 2024

Probability Space Formalism

Stochastic Process Formalism

Itô Calculus

Kolmogorov Equations

Radon-Nikodym Derivative

Other Theorems

Outline

Probability Space Formalism

Probability Space Random Variable Lebesgue–Stieltjes Integral

Stochastic Process Formalism

Itô Calculus

Kolmogorov Equations

Radon-Nikodym Derivative

Other Theorems

Definition (Probability Space)

A probability space is defined as a 3-element tuple $(\Omega, \mathcal{F}, \mathbb{P})$ where

- Ω is the sample space, i.e. the set of possible outcomes. For example, for a coin toss $\Omega = \{\text{Head}, \text{Tails}\}$
- The σ-algebra F represents the set of events we may want to consider. Continuing the coin toss example, we may have Ω = {Ø, Head, Tails, {Head, Tails}}
- A probability measure P : F → [0, 1] is a function which assigns a number in [0, 1] to any set in the σ-algebra F. The function P must be σ-additive and P(Ω) = 1

Definition (σ -algebra)

A $\sigma\text{-algebra}\ \mathcal F$ is a collection of sets satisfying the property

- \mathcal{F} contains $\Omega : \Omega \in \mathcal{F}$.
- ▶ \mathcal{F} is closed under complements: if $A \in \mathcal{F}$ then $\Omega \setminus A \in \mathcal{F}$.
- ▶ \mathcal{F} is closed under countable union: if $\forall i \ A_i \in \mathcal{F}$, then $\bigcup_i A_i \in \mathcal{F}$.

We use the notation $\mathcal{B}(\mathbb{R}^d)$ for the Borel σ -algebra of \mathbb{R}^d , which we can think of as the canonical σ -algebra for \mathbb{R}^d - it is the most compact representation of all measurable sets in \mathbb{R}^d .

Definition (Probability Measure)

A probability measure $\mathbb{P}: \mathcal{F} \to [0, 1]$ is a function which assigns a number in [0, 1] to any set in the σ -algebra \mathcal{F} .

- ▶ For every $A \in \mathcal{F}$, $\mathbb{P}(A)$ is non-negative.
- $\blacktriangleright \mathbb{P}(\Omega) = 1.$
- ▶ For all incompatible set $A_n \in \mathcal{F}$,

$$\mathbb{P}\left(\bigcup_{n}A_{n}\right) = \sum_{n}\mathbb{P}(A_{n})$$
(1)

Definition (Random Variable)

For a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a real-valued random variable $x(\omega)$ is a function $x : \Omega \to \mathbb{R}^d$, requiring that $x(\omega)$ is a measurable function, meaning that the pre-image of $x(\omega)$ lies within the σ -algebra \mathcal{F} :

$$\mathbf{x}^{-1}(B) = \{\omega : \mathbf{x}(\omega) \in B\} \in \mathcal{F}, \quad \forall B \in \mathcal{B}(\mathbb{R}^d)$$
 (2)

Definition (Probability Distribution)

This allows us to assign a numerical representation to outcomes in Ω . Then, we can ask questions such as what is the probability $P : \mathbb{R}^d \to [0, 1]$ that x is contained within a set $B \subseteq \mathbb{R}^d$

$$P(\mathbf{x}(\omega) \in B) = \mathbb{P}\left(\{\omega : \mathbf{x}(\omega) \in B\}\right)$$
(3)

Definition (Lebesgue-Stieltjes Integral)

For a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a measurable function $f : \Omega \to \mathbb{R}$ and a subset $A \in \mathcal{F}$, the Lebesgue–Stieltjes integral

$$\int_{A} f(x) d\mathbb{P}(x) \tag{4}$$

is a Lebesgue integral with respect to the probability measure \mathbb{P} .

If
$$A = \Omega$$
, then $\mathbb{E}_{\mathbb{P}}[f(x)] = \int_{\Omega} f(x) d\mathbb{P}(x)$.
Let $f(x) = \mathbf{1}(x \in A)$, then $\mathbb{E}_{\mathbb{P}}[\mathbf{1}(x \in A)] = \int_{A} d\mathbb{P}(x) = \mathbb{P}(A)$.

Outline

Probability Space Formalism

Stochastic Process Formalism

Stochastic Process Wiener Process Stochastic Differential Equation

Itô Calculus

Kolmogorov Equations

Radon-Nikodym Derivative

Other Theorems

Definition (Stochastic Process)

Given the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a stochastic process is a collection of random variables X_t or $x(\omega, t) : \Omega \times T \to \mathbb{R}$ indexed by T, which can be written as

$$\{x(\omega,t):t\in T\}\tag{5}$$

Definition (Filtration)

A filtration $\mathfrak{F} = (\mathcal{F}_t)_{t \in \mathcal{T}}$ on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is a sequence of indexed sub- σ -algebra of \mathcal{F} :

$$\mathcal{F}_s \subseteq \mathcal{F}_t \subseteq \mathcal{F}, \quad \forall s \leq t$$
 (6)

We then call the space $(\Omega, \mathcal{F}, \mathfrak{F}, \mathbb{P})$ an \mathfrak{F} -filtered probability space. This allows us to define processes that only depend on the past and present.

Definition (Adapted Process)

A stochastic process x is \mathcal{F}_t -adapted if $x(\omega, t)$ is \mathcal{F}_t -measurable:

$$\{\omega: x(\omega, t) \in B\} \in \mathcal{F}_t, \quad \forall t \in T, \forall B \in \mathcal{B}(\mathbb{R}^d)$$
(7)

Definition (Wiener Process)

An \mathcal{F}_t -adapted Wiener process (Brownian motion) is a stochastic process W_t with the following properties:

- $V_{t_0} = 0.$
- ▶ If $[t_1, t_2] \cap [s_1, s_2] = \emptyset$, then $W_{t_2} - W_{t_1}$ and $W_{s_2} - W_{s_1}$ are independent

$$\blacktriangleright \hspace{0.1in} W_{t_2} - W_{t_1} \sim \mathcal{N}(0, t_2 - t_1) \\ \hspace{0.1in} \text{for} \hspace{0.1in} t_2 \geq t_1 \end{array}$$

Stochastic Process Formalism

Definition (Stochastic Differential Equation)

For \mathcal{F}_t -adapted stochastic processes $\mu(t, X_t)$ and $\sigma(t, X_t)$, an Itô process X_t is defined as

$$X_{t} = X_{0} + \int_{0}^{t} \mu(s, X_{s}) \, ds + \int_{0}^{t} \sigma(s, X_{s}) \, dW_{s}, \tag{8}$$

which is often notationally simplified to

$$dX_t = \mu(t, X_t) dt + \sigma(t, X_t) dW_t.$$
(9)

Probability Space Formalism

Stochastic Process Formalism

Itô Calculus Itô Integral Itô Lemma

Kolmogorov Equations

Radon-Nikodym Derivative

Other Theorems

Naively defining the integral with respect to Brownian motion as before is problematic, since the limit is no longer well-defined (unique) for this case:

$$\int_{a}^{b} X_{t} \, dW_{t} = \lim_{n \to \infty} \sum_{i=0}^{n-1} X_{t_{i}^{*}} \left(W_{t_{i+1}} - W_{t_{i}} \right), \tag{10}$$

where, $t_1 = a < t_2 < ... < t_n = b, t_i^* \in [t_i, t_{i+1}]$. For the above limit to exist, we require that the function W_{t_i} has a bounded total variation in t, which does not happen, since Brownian-motion paths do not have bounded total variation.

Itô Integral

Definition (Itô Integral)

If we fix the choice $t_i^* = t_i$, it can be shown that this limit will converge in the mean-square sense.

$$\int_{a}^{b} X_{t} \, dW_{t} = \lim_{n \to \infty} \sum_{i=0}^{n-1} X_{t_{i}} \left(W_{t_{i+1}} - W_{t_{i}} \right). \tag{11}$$

Remark.

The Itô integral is special because it is a martingale.

$$\mathbb{E}\left[\int_0^t Y_s \, dW_s |\mathfrak{F}_r\right] = \int_0^r Y_s \, dW_s, \quad r \le t \tag{12}$$

when \mathfrak{F}_r is the filtration generated by $\{W_s, Y_s\}_{s \leq r}$.

Lemma (Quadratic Variation)

For a partition $\Pi = \{t_0, t_1, ..., t_j\}$ of an interval [0, T], let $|\Pi| = \max_i(t_{i+1} - t_i)$. A Brownian motion W_t satisfies the following equation with probability 1:

$$\lim_{|\Pi| \to 0} \sum_{i} (W_{t_{i+1}} - W_{t_i})^2 = T$$
(13)

Remark.

To view it informally, we can say

$$(dW)^2 = dt \tag{14}$$

which is a core transformation in the following proof of Itô Lemma.

Itô Lemma Itô Calculus

Theorem (Itô's lemma)

Let f(x) be a smooth function of two variables, and let X_t be a stochastic process satisfying $dX_t = \mu_t dt + \sigma_t dW_t$ for a Brownian motion W_t . Then

$$df(t, X_t) = \left(\frac{\partial f}{\partial t} + \mu_t \frac{\partial f}{\partial x} + \frac{1}{2}\sigma_t^2 \frac{\partial^2 f}{\partial x^2}\right) dt + \frac{\partial f}{\partial x} dW_t.$$
(15)

Proof.

Following the Taylor expansion, we have

$$df(t, X_t) = \frac{\partial f}{\partial t} dt + \frac{\partial f}{\partial x} dX_t + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} (dX_t)^2 = \left(\frac{\partial f}{\partial t} + \mu_t \frac{\partial f}{\partial x} + \frac{1}{2} \sigma_t^2 \frac{\partial^2 f}{\partial x^2} \right) dt + \sigma_t \frac{\partial f}{\partial x} dW_t$$
(16)

Remark.

For some more complicated SDE

$$dY_t = \mu(t, Y_t) dt + \sigma(t, Y_t) dB_t, \qquad (17)$$

we can define a function such that $Y_t = f(t, X_t)$ and use Itô Lemma to identify the dY_t .

Probability Space Formalism

Stochastic Process Formalism

Itô Calculus

Kolmogorov Equations

Kolmogorov Backward Equation Kolmogorov Forward Equation Some Corollaries

Radon-Nikodym Derivative

Other Theorems

Kolmogorov Equations

In probability theory, Kolmogorov equations, including Kolmogorov forward equations and Kolmogorov backward equations, characterize continuous-time Markov processes. In particular, they describe how the probability of a continuous-time Markov process in a certain state changes over time. – WikiPedia

For the case of a countable state space and denote the probability from state x at time s to state y at some later time t to be p(s, x; t, y). The Kolmogorov forward equations read

$$\frac{\partial p(s,x;t,y)}{\partial t} = \sum_{z} p(s,x;t,z) A_{zy}(t), \qquad (18)$$

while the Kolmogorov backward equations are

$$\frac{\partial p(s,x;t,y)}{\partial s} = -\sum_{z} p(s,z;t,y) A_{xz}(t), \qquad (19)$$

where A(t) is the generator and $A_{xy}(t) = \left[\frac{\partial p(s,x;t,y)}{\partial t}\right]_{t=s}, \quad \sum_{z} A_{yz}(t) = 0.$

Theorem (Kolmogorov Backward Equation)

For a stochastic process following the form of $dX_t = \mu(t, X_t) dt + \sigma(t, X_t) dW_t$. The Kolmogorov Backward Equation has the form

$$\begin{cases} -\frac{\partial u(x,s)}{\partial s} = \mu(s,x)\frac{\partial u(x,s)}{\partial x} + \frac{1}{2}\sigma^{2}(s,x)\frac{\partial^{2}u(x,s)}{\partial x^{2}}, \quad s < t\\ u(x,t) = f(x) \end{cases}$$
(20)

Then, if $f(x) = \delta_y(x)$, we can derive the transition probability density p(s, x; t, y) through the propagation of Kolmogorov Backward Equation.

$$\begin{cases} -\frac{\partial p(s,x;t,y)}{\partial s} = \mu(s,x)\frac{\partial p(s,x;t,y)}{\partial x} + \frac{1}{2}\sigma^2(s,x)\frac{\partial^2 p(s,x;t,y)}{\partial x^2}, \quad s < t\\ p(t,x;t,y) = \delta_y(x) \end{cases}$$
(21)

Proof of Kolmogorov Backward Equation

Kolmogorov Equations

Proof.

Let us recall the Itô Lemma

$$df(X_t) = \left(\mu_t \frac{\partial f}{\partial x} + \frac{1}{2}\sigma_t^2 \frac{\partial^2 f}{\partial x^2}\right) dt + \frac{\partial f}{\partial x} dW_t$$
$$= \mathcal{L}f(X_t) + \frac{\partial f}{\partial x} dW_t$$

Then, suppose u(t, x) solves the partial differential equation (PDE)

$$\partial_t u + \mathcal{L}u = 0$$
, for $t \le T$ with $u(T, x) = f(x)$ (23)

(22)

Proof of Kolmogorov Backward Equation Kolmogorov Equations

Proof.

By Ito with $X_t = x$

$$f(X_T) = u(T, X_T)$$

= $u(t, x) + \int_t^T (\partial_t u(s, X_s) + \partial_{X_s} u(s, X_s)) ds$
= $u(t, x) + \int_t^T (\partial_t u(s, X_s) + \mathcal{L}u(s, X_s)) ds + \int_t^T \partial_x u(s, X_s) \sigma_s(X_s) dW_s$

 $\mathbb{E}\left[f(X_T)|X_t=x\right]=u(t,x)$

•	0	0	۱
•	~	~	J

Remarks of Kolmogorov Backward Equation

Kolmogorov Equations

Remark.

The Kolmogorov Backward Equation can seen as the optimality condition of the "mean field dynamic programming" problem.

To demonstrate that, recall the expectation explaining $u(x,s) = \mathbb{E}[f(X_t)|X_s = x]$. The optimality condition states that

$$\mathbb{E}\left[f(X_t)|X_s=x\right] = \mathbb{E}\left[\mathbb{E}\left[f(X_t)|X_{s+\Delta}\right]|X_s=x\right] = \mathbb{E}\left[u(X_{s+\Delta}, s+\Delta)|X_s=x\right] \quad (23)$$

Then, if we denote $du(X_s, s) = \lim_{\Delta \to 0} u(X_{s+\Delta}, s+\Delta) - u(X_s, s)$, the optimality condition $\mathbb{E}[du(X_s, s)|X_s = x] = 0$ can be stated as

$$-\frac{\partial u(x,s)}{\partial s} = -\mathbb{E}\left[\frac{\partial u(X_s,s)}{\partial s}|X_s=x\right] = \mathbb{E}\left[\frac{\partial u(X_s,s)}{\partial X_s}|X_s=x\right]$$
(24)

Theorem (Fokker-Planck (FPK) Equation)

For a stochastic process following the form of $dX_t = \mu(t, X_t) dt + \sigma(t, X_t) dW_t$. The Fokker-Planck (FPK) equation has the form

$$\begin{cases} \frac{\partial u(y,t)}{\partial t} = -\frac{\partial}{\partial y} \left(\mu(y,t)u(y,t) \right) + \frac{1}{2} \frac{\partial^2}{\partial y^2} \left(\sigma^2(y,t)u(y,t) \right), & s < t \\ u(y,s) = p(y) \end{cases}$$
(25)

Then, if $p(y) = \delta_x(y)$, we can derive the transition probability density p(s, x; t, y) through the propagation of Fokker-Planck Equation.

$$\begin{cases} \frac{\partial p(s,x;t,y)}{\partial t} = -\frac{\partial}{\partial y} \left(\mu(y,t) p(s,x;t,y) \right) + \frac{1}{2} \frac{\partial^2}{\partial y^2} \left(\sigma^2(y,t) p(s,x;t,y) \right), & s < t \\ p(t,x;t,y) = \delta_x(y) \end{cases}$$
(26)

Proof of Fokker-Planck (FPK) equation

Kolmogorov Equations - Kolmogorov Forward Equation

Proof.

According to the definition

$$\frac{d}{dt} \mathbb{E} \left[u(X_t) | X_s \right] = \lim_{\Delta \to 0} \frac{1}{\Delta} \mathbb{E} \left[u(X_{t+\Delta}) - u(X_t) | X_s \right]
= \lim_{\Delta \to 0} \frac{1}{\Delta} \mathbb{E} \left[\mathbb{E} \left[u(X_{t+\Delta}) - u(X_t) | X_t \right] | X_s \right]
= \mathbb{E} \left[\mathbb{E} \left[\frac{\partial u(X_t, t)}{\partial X_t} | X_t = x \right] | X_s \right]
= \mathbb{E} \left[\mu(s, x) \frac{\partial}{\partial x} u(X_t, t) + \frac{1}{2} \sigma^2(X_t, t) \frac{\partial^2}{\partial x^2} u(X_t, t) | X_s \right]$$
(27)

Proof of Fokker-Planck (FPK) equation

Kolmogorov Equations - Kolmogorov Forward Equation

Proof.

$$\frac{d}{dt}\mathbb{E}\left[u(X_{t})|X_{s}=x\right] = \mathbb{E}\left[\mu(s,x)\frac{\partial}{\partial x}u(X_{t},t) + \frac{1}{2}\sigma^{2}(X_{t},t)\frac{\partial^{2}}{\partial x^{2}}u(X_{t},t)|X_{s}=x\right]$$

$$\int u(y)\frac{\partial p(s,x;t,y)}{\partial t}dy = \int \left[\mu(y,t)\frac{\partial}{\partial y}u(y,t) + \frac{1}{2}\sigma^{2}(y,t)\frac{\partial^{2}}{\partial y^{2}}u(y,t)\right]p(s,x;t,y)dy$$

$$= \int u(y)\left[-\frac{\partial}{\partial y}(\mu(y,t)p(s,x;t,y)) + \frac{1}{2}\frac{\partial^{2}}{\partial y^{2}}(\sigma^{2}(y,t)p(s,x;t,y))\right]dy$$
(27)

which shows that

$$\frac{\partial p(s,x;t,y)}{\partial t} = -\frac{\partial}{\partial y} (\mu(y,t)p(s,x;t,y)) + \frac{1}{2} \frac{\partial^2}{\partial y^2} (\sigma^2(y,t)p(s,x;t,y))$$
(28)

Corollary of Fokker-Planck (FPK) equation

Kolmogorov Equations - Kolmogorov Forward Equation

Corollary (Master Equation.)

If X_0 has density function $p_0(x)$, then the density function p(t, y) of X_t can be get by propagating the Fokker-Planck equation.

$$\begin{cases} \frac{\partial p(t,y)}{\partial t} = -\frac{\partial}{\partial y} \left(\mu(y,t) p(t,y) \right) + \frac{1}{2} \frac{\partial^2}{\partial y^2} \left(\sigma^2(y,t) p(t,y) \right), & s < t \\ p(0,y) = p_0(y) \end{cases}$$
(29)

Proof.

$$\mathbb{E}(f(X_t)) = \mathbb{E}(\mathbb{E}[f(X_t)]|X_0)$$

= $\int \left[\int f(y)p(0,x;t,y)dy\right] p_0(x)dx$ (30)
 $\int f(y)p(t,y)dy = \int f(y) \left[\int p_0(x)p(0,x;t,y)dx\right] dy$

Definition. Given the stochastic process $X(\cdot) : dX = F(X, t)dt + G(X, t)dW$ and the marginal probability density $p_t(X(t))$ at time t, the reverse-time stochastic process is defined as

$$dX = \left\{ F(X,\tilde{t}) - \nabla \cdot \left[G(X,\tilde{t})G(X,\tilde{t})^T \right] - G(X,\tilde{t})G(X,\tilde{t})^T \nabla_x \log p_{\tilde{t}}(x) \right\} d\tilde{t} + G(X,\tilde{t})d\tilde{W}$$

when n = 1 and G(X, t) = G(t)

$$dX = \left[F(X, \tilde{t}) - G^2(\tilde{t}) \nabla_x \log p_{\tilde{t}}(x)\right] d\tilde{t} + G(\tilde{t}) d\tilde{W}$$

where $\tilde{W}(\cdot)$ represents the standard Wiener process when time flows backwards, and $d\tilde{t}$ is an infinitesimal negative timestep from T to 0.

Reverse-time SDE

Kolmogorov Equations - Some Corollaries

Proof. For some stochastic process $X(\cdot)$: dX = F(X, t)dt + G(t)dW, the corresponding Fokker-Planck equation is defined as

$$\frac{\partial p_t(X)}{\partial t} = -\frac{\partial}{\partial x} \left[F(X,t) p_t(X) \right] + \frac{1}{2} \frac{\partial^2}{\partial x^2} \left[G^2(t) p_t(X) \right]$$

We also define the reverse-time stochastic process $Y(\cdot) : dY = F(Y, \tilde{t})dt + G(\tilde{t})d\tilde{W}$, and the corresponding $q_t(Y)$ is defined as

$$\begin{aligned} \frac{\partial q_t(Y)}{\partial t} &= -\frac{\partial p_{T-t}(X)}{\partial t} = \frac{\partial}{\partial x} \left[F(X, T-t) p_{T-t}(X) \right] - \frac{1}{2} \frac{\partial^2}{\partial x^2} \left[G^2(T-t) p_{T-t}(X) \right] \\ &= \frac{\partial}{\partial x} \left[\left(F(X, T-t) - G^2(T-t) \nabla_x \log p_{T-t}(x) \right) p_{T-t}(X) \right] + \frac{1}{2} \frac{\partial^2}{\partial x^2} \left[G^2(T-t) p_{T-t}(X) \right] \\ &= \frac{\partial}{\partial y} \left[\left(F(X, \tilde{t}) - G^2(\tilde{t}) \nabla_x \log p_{\tilde{t}}(x) \right) q_t(Y) \right] + \frac{1}{2} \frac{\partial^2}{\partial y^2} \left[G^2(\tilde{t}) q_t(Y) \right] \end{aligned}$$

where

$$F(Y,\tilde{t}) = F(X,\tilde{t}) - G^{2}(\tilde{t})\nabla_{x}\log p_{\tilde{t}}(x), \quad G(t) = G(\tilde{t})$$

Definition. For each reverse-time stochastic process, the probabilistic flow ODE can be defined as followed whose trajectories share the marginal probability densities $p_t(X(t))$.

$$dX = \left\{ F(X,\tilde{t}) - \frac{1}{2} \nabla \cdot \left[G(X,\tilde{t}) G(X,\tilde{t})^{T} \right] - \frac{1}{2} G(X,\tilde{t}) G(X,\tilde{t})^{T} \nabla_{x} \log p_{\tilde{t}}(x) \right\} d\tilde{t}$$

when n = 1 and G(X, t) = G(t)

$$dX = \left[F(X,\tilde{t}) - \frac{1}{2}G^2(\tilde{t})\nabla_x \log p_{\tilde{t}}(x)\right]d\tilde{t}$$

where $d\tilde{t}$ is an infinitesimal negative timestep from T to 0.

Proof of Probability ODE Flow

Kolmogorov Equations - Some Corollaries

Proof. For some stochastic process $X(\cdot) : dX = F(X, t)dt + G(t)dW$, the corresponding Fokker-Planck equation is defined as

$$\frac{\partial p_t(X)}{\partial t} = -\frac{\partial}{\partial x} \left[F(X, t) p_t(X) \right] + \frac{1}{2} \frac{\partial^2}{\partial x^2} \left[G^2(t) p_t(X) \right]$$

We also define the reverse-time ode process $Y(\cdot)$: $dY = F(Y, \tilde{t})d\tilde{t}$, and the corresponding $q_t(Y)$ is defined as

$$\frac{\partial q_t(Y)}{\partial t} = -\frac{\partial p_{T-t}(X)}{\partial t} = \frac{\partial}{\partial x} \left[F(X, T-t) p_{T-t}(X) \right] - \frac{1}{2} \frac{\partial^2}{\partial x^2} \left[G^2(T-t) p_{T-t}(X) \right]$$
$$= \frac{\partial}{\partial x} \left[\left(F(X, T-t) - \frac{1}{2} G^2(T-t) \nabla_x \log p_{T-t}(x) \right) p_{T-t}(X) \right]$$
$$= \frac{\partial}{\partial y} \left[\left(F(X, \tilde{t}) - \frac{1}{2} G^2(\tilde{t}) \nabla_x \log p_{\tilde{t}}(x) \right) q_t(Y) \right]$$

where

$$F(Y,\tilde{t}) = F(X,\tilde{t}) - \frac{1}{2}G^2(\tilde{t})\nabla_x \log p_t(x)$$

Probability Space Formalism

Stochastic Process Formalism

Itô Calculus

Kolmogorov Equations

Radon-Nikodym Derivative

Disintegration Theorem RN Derivative of Itô Process

Other Theorems

Theorem (Radon-Nikodym Theorem)

Given probability measures \mathbb{P} and \mathbb{Q} , defined on the measurable space (Ω, \mathcal{F}) , there exists a measurable function $\frac{d\mathbb{P}}{d\mathbb{Q}} : \Omega \to [0, \infty)$, and for any set $A \subseteq \mathcal{F}$:

$$\mathbb{P}(A) = \int_{A} \frac{d\mathbb{P}}{d\mathbb{Q}}(x) d\mathbb{Q}(x), \qquad (31)$$

where the function $\frac{d\mathbb{P}}{d\mathbb{Q}}(x)$ is known as the RN-derivative.

A direct consequence of this result is

•

$$\int_{A} f(x) d\mathbb{P}(x) = \int_{A} f(x) \frac{d\mathbb{P}}{d\mathbb{Q}}(x) d\mathbb{Q}(x).$$
(32)

Disintegration Theorem

Radon-Nikodym Derivative - Disintegration Theorem

Theorem (Disintegration Theorem)

Disintegration Theorem for continuous probability measures: For a probability space

$$Z, \mathcal{B}(Z), \mathbb{P}$$
 where Z is a product space: $Z = Z_x \times Z_y$, and
 $\blacktriangleright Z_x \subseteq \mathbb{R}^d$, $Z_y \subseteq \mathbb{R}^d$,

▶ $\pi_i : Z \to Z_i$ is a measurable function known as the canonical projection operator (i.e., $\pi_x(z_x, z_y) = z_x$ and $\pi_x^{-1}(z_x) = \{y | \pi_x(z_x) = z\}$),

there exists a measure $\mathbb{P}_{y|x}(\cdot|x)$, such that

$$\int_{Z_{x}\times Z_{y}} f(x,y) \, d\mathbb{P}(y) = \int_{Z_{x}} \int_{Z_{y}} f(x,y) \, d\mathbb{P}_{y|x}(y|x) \, d\mathbb{P}(\pi_{x}^{-1}(x))$$
(33)

where $\mathbb{P}_{x}(\cdot) = \mathbb{P}(\pi^{-1}(\cdot))$ is a probability measure, typically referred to as a pullback measure, and corresponds to the marginal distribution.

Disintegration Theorem

Radon-Nikodym Derivative - Disintegration Theorem

Corollary

The disintegration theorem implies a very interesting corollary as:

$$\frac{d\mathbb{P}}{d\mathbb{Q}}(x,y) = \frac{d\mathbb{P}_{y|x}}{d\mathbb{Q}_{y|x}}(y)\frac{d\mathbb{P}_{x}}{d\mathbb{Q}_{x}}(x)$$
(34)

Remarks.

The disintegration theorem can be seen as the conditional probability on measure space.

Definition (Path Measure)

For an Itô process of the form $dX_t = \mu(t, X_t) dt + \sigma(t, X_t) dW_t$ defined in [0, T], we call \mathbb{P} the path measure of the above process, with outcome space $\Omega = C([0, T], \mathbb{R}^d)$, if the distribution \mathbb{P} describes a weak solution to the above SDE.

Radon-Nikodym Derivative - RN Derivative of Itô Process

Theorem (Girsanov Theorem)

Given two Itô processes with the same constant volatility: $dX_t = \mu_1(t, X_t) dt + \sigma dW_t$ and $dY_t = \mu_2(t, X_t) dt + \sigma dW_t$, the RN derivative of their respective path measures \mathbb{P}, \mathbb{Q} is given by

$$\frac{d\mathbb{P}}{d\mathbb{Q}}(\cdot) = \exp\left(-\frac{1}{2\sigma^2}\int_0^t \|\mu_1(s,\cdot) - \mu_2(s,\cdot)\|^2 ds + \frac{1}{\sigma^2}\int_0^t (\mu_1(s,\cdot) - \mu_2(s,\cdot))^\top dW_s\right)$$
(35)

where the type signature of this RN derivative is $\frac{d\mathbb{P}}{d\mathbb{Q}}$: $C(\mathcal{T}, \mathbb{R}^d) \to \mathbb{R}$.

Outline

Probability Space Formalism

Stochastic Process Formalism

Itô Calculus

Kolmogorov Equations

Radon-Nikodym Derivative

Other Theorems Feynman-Kac Formulation Doob's h-transform Nelson's Duality

Theorem (Feynman-Kac Formulation)

For a stochastic process following the form of $dX_t = \mu_1(t, X_t) dt + \sigma dW_t$. If u(x, t) satisfies the form

$$\begin{cases} \frac{\partial u(x,t)}{\partial t} + \mu(x,t)\frac{\partial u(x,t)}{\partial x} + \frac{1}{2}\sigma^2(x,t)\frac{\partial^2 u(x,t)}{\partial x^2} - q(x,t)u(x,t) = -g(x,t)\\ u(x,T) = f(x) \end{cases}$$
(36)

Then, Feynman-Kac Formulation tells us that

$$u(x,t) = \mathbb{E}\left[f(\xi_T)e^{-\int_t^T q(\theta,\xi_\theta)d\theta} + \int_t^T g(s,\xi_s)e^{-\int_t^T q(\theta,\xi_\theta)d\theta}ds|\xi_t = x\right]$$
(37)

Proof of Feynman-Kac Formulation

Other Theorems

Proof.

Recall the Itô formula

$$du(\xi_{s},s) = \left(\frac{\partial u(\xi_{s},s)}{\partial s} + \mu(\xi_{s},s)\frac{\partial u(\xi_{s},s)}{\partial s} + \frac{1}{2}\sigma^{2}(\xi_{s},s)\frac{\partial^{2}u(\xi_{s},s)}{\partial x^{2}}\right)ds$$
$$+ \frac{\partial u(\xi_{s},s)}{\partial x}\sigma^{2}(\xi_{s},s)dW_{t}$$
$$= q(\xi_{s},s)u(\xi_{s},s)ds - g(\xi_{s},s)ds + \frac{\partial u(\xi_{s},s)}{\partial x}\sigma^{2}(\xi_{s},s)dW_{s}$$
(38)

Proof of Feynman-Kac Formulation Other Theorems

Proof.

multiplying both sides of the above equation by the integrating factor $e^{-\int_t^s q(\xi_{\theta}, \theta) d\theta}$, and using the Itô formula, we have

$$d\left(u(\xi_{s},s)e^{-\int_{t}^{s}q(\xi_{\theta},\theta)d\theta}\right) = -q(\xi_{s},s)e^{-\int_{t}^{s}q(x_{\theta},\theta)d\theta}u(\xi_{s},s)ds + e^{-\int_{t}^{s}q(\xi_{\theta},\theta)d\theta}du(\xi_{s},s)$$
$$= e^{-\int_{t}^{s}q(\xi_{\theta},\theta)d\theta}\left(-g(\xi_{s},s)ds + \frac{\partial u(\xi_{s},s)}{\partial x}\sigma^{2}(\xi_{s},s)dW_{s}\right)$$
(38)

Substituting the initial time t and terminal time T, we obtain

$$u(t,\xi_t) = f(\xi_T) e^{-\int_t^T q(\xi_\theta,\theta) \mathrm{d}\theta} + \int_t^T e^{-\int_t^s q(\xi_\theta,\theta) \mathrm{d}\theta} \left(g(\xi_s,s) \mathrm{d}s - \frac{\partial u(\xi_s,s)}{\partial x} \sigma^2(\xi_s,s) \mathrm{d}W_s \right)$$

Taking the expectation $\mathbb{E}(\cdot \mid \xi_t = x)$ of both sides yields the desired result.

Given a process X_t that solves $dX_t = \mu(t, X_t) dt + \sigma(t, X_t) dW_t$ and assuming that we want to condition its solution to hit X_T at time t = T, then the h-transform provides us with the following SDE for the conditioned process:

$$dX = [\mu(t, X_t) + \sigma(t, X_t)Q\sigma(t, X_t)\nabla \log p(X_T \mid X_t)] dt + \sigma(t, X_t)dW_t,$$

Let us define a forward process X_t that solves $dX_t = \mu_+(t, X_t) dt + \sigma(t, X_t) dW_t$ and a backward process $X_{\tilde{t}}$ that solves $dX_{\tilde{t}} = \mu_-(\tilde{t}, X_{\tilde{t}}) d\tilde{t} + \sigma(\tilde{t}, X_{\tilde{t}}) dW_{\tilde{t}}$. We can also define the corresponding probability measure as $p_t(x)$ and $p_{\tilde{t}}(x)$ respectively. Then, if $p_{T-t}(x) = p_{\tilde{t}}(x)$. The Nelson's Duality tells us that

$$\mu_{+}(t,x) - \mu_{-}(\tilde{t},x) = \sigma^{2} \nabla_{x} \log p_{\tilde{t}}(x) = \sigma^{2} \nabla_{x} \log p_{t}(x)$$
(39)

- Applied Stochastic Calculus
- Topics in Mathematics with Applications in Finance
- Machine-learning approaches for the empirical Schrodinger bridge problem
- ► AN INTRODUCTION TO STOCHASTIC DIFFERENTIAL EQUATIONS