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Probability Space
Probability Space Formalism

Definition (Probability Space)

A probability space is defined as a 3-element tuple (Ω,F ,P) where
▶ Ω is the sample space, i.e. the set of possible outcomes. For example, for a coin

toss Ω = {Head,Tails}
▶ The σ-algebra F represents the set of events we may want to consider.

Continuing the coin toss example, we may have Ω = {∅,Head,Tails, {Head,Tails}}
▶ A probability measure P : F → [0, 1] is a function which assigns a number in [0, 1]

to any set in the σ-algebra F . The function P must be σ-additive and P(Ω) = 1
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σ-algebra
Probability Space Formalism

Definition (σ-algebra)

A σ-algebra F is a collection of sets satisfying the property

▶ F contains Ω : Ω ∈ F .

▶ F is closed under complements: if A ∈ F then Ω \ A ∈ F .

▶ F is closed under countable union: if ∀i Ai ∈ F , then
⋃

i Ai ∈ F .

We use the notation B(Rd) for the Borel σ-algebra of Rd , which we can think of as
the canonical σ-algebra for Rd - it is the most compact representation of all
measurable sets in Rd .
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Probability Measure
Probability Space Formalism

Definition (Probability Measure)

A probability measure P : F → [0, 1] is a function which assigns a number in [0, 1] to
any set in the σ-algebra F .

▶ For every A ∈ F , P(A) is non-negative.
▶ P(Ω) = 1.

▶ For all incompatible set An ∈ F ,

P
(⋃

n
An

)
=

∑
n

P(An) (1)

6 / 43



Random Variable
Probability Space Formalism

Definition (Random Variable)

For a probability space (Ω,F ,P), a real-valued random variable x(ω) is a function
x : Ω → Rd , requiring that x(ω) is a measurable function, meaning that the pre-image
of x(ω) lies within the σ-algebra F :

x−1(B) = {ω : x(ω) ∈ B} ∈ F , ∀B ∈ B(Rd) (2)

Definition (Probability Distribution)

This allows us to assign a numerical representation to outcomes in Ω. Then, we can
ask questions such as what is the probability P : Rd → [0, 1] that x is contained within
a set B ⊆ Rd

P(x(ω) ∈ B) = P ({ω : x(ω) ∈ B}) (3)

7 / 43



Lebesgue–Stieltjes Integral
Probability Space Formalism

Definition (Lebesgue–Stieltjes Integral)

For a probability space (Ω,F ,P), a measurable function f : Ω → R and a subset
A ∈ F , the Lebesgue–Stieltjes integral∫

A
f (x)dP(x) (4)

is a Lebesgue integral with respect to the probability measure P.

If A = Ω, then EP[f (x)] =
∫
Ω f (x)dP(x).

Let f (x) = 1(x ∈ A), then EP[1(x ∈ A)] =
∫
A dP(x) = P(A).
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Stochastic Process
Stochastic Process Formalism

Definition (Stochastic Process)

Given the probability space (Ω,F ,P), a stochastic process is a collection of random
variables Xt or x(ω, t) : Ω× T → R indexed by T , which can be written as

{x(ω, t) : t ∈ T} (5)
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Stochastic Process
Stochastic Process Formalism

Definition (Filtration)

A filtration F = (Ft)t∈T on the probability space (Ω,F ,P) is a sequence of indexed
sub-σ-algebra of F :

Fs ⊆ Ft ⊆ F , ∀s ≤ t (6)

We then call the space (Ω,F ,F,P) an F-filtered probability space. This allows us to
define processes that only depend on the past and present.

Definition (Adapted Process)

A stochastic process x is Ft-adapted if x(ω, t) is Ft-measurable:

{ω : x(ω, t) ∈ B} ∈ Ft , ∀t ∈ T ,∀B ∈ B(Rd) (7)
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Wiener Process
Stochastic Process Formalism

Definition (Wiener Process)

An Ft-adapted Wiener process
(Brownian motion) is a stochastic
process Wt with the following
properties:

▶ Wt0 = 0.

▶ If [t1, t2] ∩ [s1, s2] = ∅, then
Wt2 −Wt1 and Ws2 −Ws1 are
independent

▶ Wt2 −Wt1 ∼ N (0, t2 − t1)
for t2 ≥ t1
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Stochastic Differential Equation
Stochastic Process Formalism

Definition (Stochastic Differential Equation)

For Ft-adapted stochastic processes µ(t,Xt) and σ(t,Xt), an Itô process Xt is defined
as

Xt = X0 +

∫ t

0
µ(s,Xs) ds +

∫ t

0
σ(s,Xs) dWs , (8)

which is often notationally simplified to

dXt = µ(t,Xt) dt + σ(t,Xt) dWt . (9)
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Itô Integral
Itô Calculus

Naively defining the integral with respect to Brownian motion as before is problematic,
since the limit is no longer well-defined (unique) for this case:∫ b

a
Xt dWt = lim

n→∞

n−1∑
i=0

Xt∗i

(
Wti+1 −Wti

)
, (10)

where, t1 = a < t2 < ... < tn = b, t∗i ∈ [ti , ti+1]. For the above limit to exist, we
require that the function Wti has a bounded total variation in t, which does not
happen, since Brownian-motion paths do not have bounded total variation.
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Itô Integral
Itô Calculus

Definition (Itô Integral)

If we fix the choice t∗i = ti , it can be shown that this limit will converge in the
mean-square sense. ∫ b

a
Xt dWt = lim

n→∞

n−1∑
i=0

Xti

(
Wti+1 −Wti

)
. (11)

Remark.

The Itô integral is special because it is a martingale.

E
[∫ t

0
Ys dWs |Fr

]
=

∫ r

0
Ys dWs , r ≤ t (12)

when Fr is the filtration generated by {Ws ,Ys}s≤r .
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Itô Lemma
Itô Calculus

Lemma (Quadratic Variation)

For a partition Π = {t0, t1, ..., tj} of an interval [0,T ], let |Π| = maxi (ti+1 − ti ). A
Brownian motion Wt satisfies the following equation with probability 1:

lim
|Π|→0

∑
i

(Wti+1 −Wti )
2 = T (13)

Remark.

To view it informally, we can say

(dW )2 = dt (14)

which is a core transformation in the following proof of Itô Lemma.
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Itô Lemma
Itô Calculus

Theorem (Itô’s lemma)

Let f (x) be a smooth function of two variables, and let Xt be a stochastic process
satisfying dXt = µt dt + σt dWt for a Brownian motion Wt . Then

df (t,Xt) =

(
∂f

∂t
+ µt

∂f

∂x
+

1

2
σ2
t

∂2f

∂x2

)
dt +

∂f

∂x
dWt . (15)

Proof.

Following the Taylor expansion, we have

df (t,Xt) =
∂f

∂t
dt +

∂f

∂x
dXt +

1

2

∂2f

∂x2
(dXt)

2

=

(
∂f

∂t
+ µt

∂f

∂x
+

1

2
σ2
t

∂2f

∂x2

)
dt + σt

∂f

∂x
dWt

(16)
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Itô Lemma
Itô Calculus

Remark.

For some more complicated SDE

dYt = µ(t,Yt) dt + σ(t,Yt) dBt , (17)

we can define a function such that Yt = f (t,Xt) and use Itô Lemma to identify the
dYt .
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Kolmogorov Equations

In probability theory, Kolmogorov equations, including Kolmogorov forward equations
and Kolmogorov backward equations, characterize continuous-time Markov processes.
In particular, they describe how the probability of a continuous-time Markov process in
a certain state changes over time. – WikiPedia
For the case of a countable state space and denote the probability from state x at time
s to state y at some later time t to be p(s, x ; t, y). The Kolmogorov forward equations
read

∂p(s, x ; t, y)

∂t
=

∑
z

p(s, x ; t, z)Azy (t), (18)

while the Kolmogorov backward equations are

∂p(s, x ; t, y)

∂s
= −

∑
z

p(s, z ; t, y)Axz(t), (19)

where A(t) is the generator and Axy (t) =
[
∂p(s,x ;t,y)

∂t

]
t=s

,
∑

z Ayz(t) = 0.
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Kolmogorov Backward Equation
Kolmogorov Equations

Theorem (Kolmogorov Backward Equation)

For a stochastic process following the form of dXt = µ(t,Xt) dt + σ(t,Xt) dWt . The
Kolmogorov Backward Equation has the form{

−∂u(x ,s)
∂s = µ(s, x)∂u(x ,s)∂x + 1

2σ
2(s, x)∂

2u(x ,s)
∂x2

, s < t
u(x , t) = f (x)

(20)

Then, if f (x) = δy (x), we can derive the transition probability density p(s, x ; t, y)
through the propagation of Kolmogorov Backward Equation.{

−∂p(s,x ;t,y)
∂s = µ(s, x)∂p(s,x ;t,y)∂x + 1

2σ
2(s, x)∂

2p(s,x ;t,y)
∂x2

, s < t
p(t, x ; t, y) = δy (x)

(21)
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Proof of Kolmogorov Backward Equation
Kolmogorov Equations

Proof.

Let us recall the Itô Lemma

df (Xt) =

(
µt

∂f

∂x
+

1

2
σ2
t

∂2f

∂x2

)
dt +

∂f

∂x
dWt

= Lf (Xt) +
∂f

∂x
dWt

(22)

Then, suppose u(t, x) solves the partial differential equation (PDE)

∂tu + Lu = 0, for t ≤ T with u(T , x) = f (x) (23)
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Proof of Kolmogorov Backward Equation
Kolmogorov Equations

Proof.

By Ito with Xt = x

f (XT ) = u(T ,XT )

= u(t, x) +

∫ T

t
(∂tu(s,Xs) + ∂Xsu(s,Xs)) ds

= u(t, x) +

∫ T

t
(∂tu(s,Xs) + Lu(s,Xs)) ds +

∫ T

t
∂xu(s,Xs)σs(Xs) dWs

E [f (XT )|Xt = x ] = u(t, x)
(22)
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Remarks of Kolmogorov Backward Equation
Kolmogorov Equations

Remark.

The Kolmogorov Backward Equation can seen as the optimality condition of the
”mean field dynamic programming” problem.
To demonstrate that, recall the expectation explaining u(x , s) = E [f (Xt)|Xs = x ]. The
optimality condition states that

E [f (Xt)|Xs = x ] = E [E [f (Xt)|Xs+∆] |Xs = x ] = E [u(Xs+∆, s +∆)|Xs = x ] (23)

Then, if we denote du(Xs , s) = lim∆→0 u(Xs+∆, s +∆)− u(Xs , s), the optimality
condition E [du(Xs , s)|Xs = x ] = 0 can be stated as

−∂u(x , s)

∂s
= −E

[
∂u(Xs , s)

∂s
|Xs = x

]
= E

[
∂u(Xs , s)

∂Xs
|Xs = x

]
(24)
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Fokker-Planck (FPK) equation
Kolmogorov Equations - Kolmogorov Forward Equation

Theorem (Fokker-Planck (FPK) Equation)

For a stochastic process following the form of dXt = µ(t,Xt) dt + σ(t,Xt) dWt . The
Fokker-Planck (FPK) equation has the form{

∂u(y ,t)
∂t = − ∂

∂y (µ(y , t)u(y , t)) +
1
2

∂2

∂y2

(
σ2(y , t)u(y , t)

)
, s < t

u(y , s) = p(y)
(25)

Then, if p(y) = δx(y), we can derive the transition probability density p(s, x ; t, y)
through the propagation of Fokker-Planck Equation.{

∂p(s,x ;t,y)
∂t = − ∂

∂y (µ(y , t)p(s, x ; t, y)) +
1
2

∂2

∂y2

(
σ2(y , t)p(s, x ; t, y)

)
, s < t

p(t, x ; t, y) = δx(y)
(26)
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Proof of Fokker-Planck (FPK) equation
Kolmogorov Equations - Kolmogorov Forward Equation

Proof.

According to the definition

d

dt
E [u(Xt)|Xs ] = lim

∆→0

1

∆
E [u(Xt+∆)− u(Xt)|Xs ]

= lim
∆→0

1

∆
E [E [u(Xt+∆)− u(Xt)|Xt ] |Xs ]

= E
[
E
[
∂u(Xt , t)

∂Xt
|Xt = x

]
|Xs

]
= E

[
µ(s, x)

∂

∂x
u(Xt , t) +

1

2
σ2(Xt , t)

∂2

∂x2
u(Xt , t)|Xs

]
(27)
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Proof of Fokker-Planck (FPK) equation
Kolmogorov Equations - Kolmogorov Forward Equation

Proof.

d

dt
E [u(Xt)|Xs = x ] = E

[
µ(s, x)

∂

∂x
u(Xt , t) +

1

2
σ2(Xt , t)

∂2

∂x2
u(Xt , t)|Xs = x

]
∫

u(y)
∂p(s, x ; t, y)

∂t
dy =

∫ [
µ(y , t)

∂

∂y
u(y , t) +

1

2
σ2(y , t)

∂2

∂y2
u(y , t)

]
p(s, x ; t, y)dy

=

∫
u(y)

[
− ∂

∂y
(µ(y , t)p(s, x ; t, y)) +

1

2

∂2

∂y2
(
σ2(y , t)p(s, x ; t, y)

)]
dy

(27)
which shows that

∂p(s, x ; t, y)

∂t
= − ∂

∂y
(µ(y , t)p(s, x ; t, y)) +

1

2

∂2

∂y2
(
σ2(y , t)p(s, x ; t, y)

)
(28)
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Corollary of Fokker-Planck (FPK) equation
Kolmogorov Equations - Kolmogorov Forward Equation

Corollary (Master Equation.)

If X0 has density function p0(x), then the density function p(t, y) of Xt can be get by
propagating the Fokker-Planck equation.{

∂p(t,y)
∂t = − ∂

∂y (µ(y , t)p(t, y)) +
1
2

∂2

∂y2

(
σ2(y , t)p(t, y)

)
, s < t

p(0, y) = p0(y)
(29)

Proof.

E(f (Xt)) = E(E[f (Xt)]|X0)

=

∫ [∫
f (y)p(0, x ; t, y)dy

]
p0(x)dx∫

f (y)p(t, y)dy =

∫
f (y)

[∫
p0(x)p(0, x ; t, y)dx

]
dy

(30)
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Reverse-time SDE
Kolmogorov Equations - Some Corollaries

Definition. Given the stochastic process X (·) : dX = F (X , t)dt + G (X , t)dW and the
marginal probability density pt(X (t)) at time t, the reverse-time stochastic process is
defined as

dX =
{
F (X , t̃)−∇ ·

[
G (X , t̃)G (X , t̃)T

]
− G (X , t̃)G (X , t̃)T∇x log pt̃(x)

}
dt̃+G (X , t̃)dW̃

when n = 1 and G (X , t) = G (t)

dX =
[
F (X , t̃)− G 2(t̃)∇x log pt̃(x)

]
dt̃ + G (t̃)dW̃

where W̃ (·) represents the standard Wiener process when time flows backwards, and
dt̃ is an infinitesimal negative timestep from T to 0.
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Reverse-time SDE
Kolmogorov Equations - Some Corollaries

Proof. For some stochastic process X (·) : dX = F (X , t)dt + G (t)dW , the corresponding
Fokker-Planck equation is defined as

∂pt(X )

∂t
= − ∂

∂x
[F (X , t)pt(X )] +

1

2

∂2

∂x2
[
G 2(t)pt(X )

]
We also define the reverse-time stochastic process Y (·) : dY = F (Y , t̃)dt + G (t̃)dW̃ , and the
corresponding qt(Y ) is defined as

∂qt(Y )

∂t
= −∂pT−t(X )

∂t
=

∂

∂x
[F (X ,T − t)pT−t(X )]− 1

2

∂2

∂x2
[
G 2(T − t)pT−t(X )

]
=

∂

∂x

[(
F (X ,T − t)− G 2(T − t)∇x log pT−t(x)

)
pT−t(X )

]
+

1

2

∂2

∂x2
[
G 2(T − t)pT−t(X )

]
=

∂

∂y

[(
F (X , t̃)− G 2(t̃)∇x log pt̃(x)

)
qt(Y )

]
+

1

2

∂2

∂y2

[
G 2(t̃)qt(Y )

]
where

F (Y , t̃) = F (X , t̃)− G 2(t̃)∇x log pt̃(x), G (t) = G (t̃)
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Probability ODE Flow
Kolmogorov Equations - Some Corollaries

Definition. For each reverse-time stochastic process, the probabilistic flow ODE can be
defined as followed whose trajectories share the marginal probability densities pt(X (t)).

dX =

{
F (X , t̃)− 1

2
∇ ·

[
G (X , t̃)G (X , t̃)T

]
− 1

2
G (X , t̃)G (X , t̃)T∇x log pt̃(x)

}
dt̃

when n = 1 and G (X , t) = G (t)

dX =

[
F (X , t̃)− 1

2
G 2(t̃)∇x log pt̃(x)

]
dt̃

where dt̃ is an infinitesimal negative timestep from T to 0.
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Proof of Probability ODE Flow
Kolmogorov Equations - Some Corollaries

Proof. For some stochastic process X (·) : dX = F (X , t)dt + G (t)dW , the corresponding
Fokker-Planck equation is defined as

∂pt(X )

∂t
= − ∂

∂x
[F (X , t)pt(X )] +

1

2

∂2

∂x2
[
G 2(t)pt(X )

]
We also define the reverse-time ode process Y (·) : dY = F (Y , t̃)dt̃, and the corresponding
qt(Y ) is defined as

∂qt(Y )

∂t
= −∂pT−t(X )

∂t
=

∂

∂x
[F (X ,T − t)pT−t(X )]− 1

2

∂2

∂x2
[
G 2(T − t)pT−t(X )

]
=

∂

∂x

[(
F (X ,T − t)− 1

2
G 2(T − t)∇x log pT−t(x)

)
pT−t(X )

]
=

∂

∂y

[(
F (X , t̃)− 1

2
G 2(t̃)∇x log pt̃(x)

)
qt(Y )

]
where

F (Y , t̃) = F (X , t̃)− 1

2
G 2(t̃)∇x log pt(x)
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Radon-Nikodym Derivative

Theorem (Radon-Nikodym Theorem)

Given probability measures P and Q, defined on the measurable space (Ω,F), there
exists a measurable function dP

dQ : Ω → [0,∞), and for any set A ⊆ F :

P(A) =
∫
A

dP
dQ

(x) dQ(x), (31)

where the function dP
dQ(x) is known as the RN-derivative.

A direct consequence of this result is∫
A
f (x) dP(x) =

∫
A
f (x)

dP
dQ

(x) dQ(x). (32)
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Disintegration Theorem
Radon-Nikodym Derivative - Disintegration Theorem

Theorem (Disintegration Theorem)

Disintegration Theorem for continuous probability measures: For a probability space

Z ,B(Z ),P where Z is a product space: Z = Zx × Zy , and

▶ Zx ⊆ Rd , Zy ⊆ Rd ,

▶ πi : Z → Zi is a measurable function known as the canonical projection operator
(i.e., πx(zx , zy ) = zx and π−1

x (zx) = {y |πx(zx) = z}),
there exists a measure Py |x(·|x), such that∫

Zx×Zy

f (x , y) dP(y) =
∫
Zx

∫
Zy

f (x , y) dPy |x(y |x) dP(π−1
x (x)) (33)

where Px(·) = P(π−1(·)) is a probability measure, typically referred to as a pullback
measure, and corresponds to the marginal distribution.

34 / 43



Disintegration Theorem
Radon-Nikodym Derivative - Disintegration Theorem

Corollary

The disintegration theorem implies a very interesting corollary as:

dP
dQ

(x , y) =
dPy |x

dQy |x
(y)

dPx

dQx
(x) (34)

Remarks.

The disintegration theorem can be seen as the conditional probability on measure
space.
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Path Measure
Radon-Nikodym Derivative - RN Derivative of Itô Process

Definition (Path Measure)

For an Itô process of the form dXt = µ(t,Xt) dt + σ(t,Xt) dWt defined in [0,T ], we
call P the path measure of the above process, with outcome space Ω = C ([0,T ],Rd),
if the distribution P describes a weak solution to the above SDE.
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RN Derivative of Itô Process
Radon-Nikodym Derivative - RN Derivative of Itô Process

Theorem (Girsanov Theorem)

Given two Itô processes with the same constant volatility: dXt = µ1(t,Xt) dt + σ dWt

and dYt = µ2(t,Xt) dt + σ dWt , the RN derivative of their respective path measures
P,Q is given by

dP
dQ

(·) = exp

(
− 1

2σ2

∫ t

0
∥µ1(s, ·)− µ2(s, ·)∥2 ds +

1

σ2

∫ t

0
(µ1(s, ·)− µ2(s, ·))⊤ dWs

)
(35)

where the type signature of this RN derivative is dP
dQ : C (T ,Rd) → R.
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Itô Calculus

Kolmogorov Equations

Radon-Nikodym Derivative

Other Theorems
Feynman-Kac Formulation
Doob’s h-transform
Nelson’s Duality

38 / 43



Feynman-Kac Formulation
Other Theorems

Theorem (Feynman-Kac Formulation)

For a stochastic process following the form of dXt = µ1(t,Xt) dt + σ dWt . If u(x , t)
satisfies the form{

∂u(x ,t)
∂t + µ(x , t)∂u(x ,t)∂x + 1

2σ
2(x , t)∂

2u(x ,t)
∂x2

− q(x , t)u(x , t) = −g(x , t)
u(x ,T ) = f (x)

(36)

Then, Feynman-Kac Formulation tells us that

u(x , t) = E
[
f (ξT )e

−
∫ T
t q(θ,ξθ)dθ +

∫ T

t
g(s, ξs)e

−
∫ T
t q(θ,ξθ)dθds|ξt = x

]
(37)
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Proof of Feynman-Kac Formulation
Other Theorems

Proof.

Recall the Itô formula

du(ξs , s) =

(
∂u(ξs , s)

∂s
+ µ(ξs , s)

∂u(ξs , s)

∂s
+

1

2
σ2(ξs , s)

∂2u(ξs , s)

∂x2

)
ds

+
∂u(ξs , s)

∂x
σ2(ξs , s)dWt

= q(ξs , s)u(ξs , s)ds − g(ξs , s)ds +
∂u(ξs , s)

∂x
σ2(ξs , s)dWs

(38)
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Proof of Feynman-Kac Formulation
Other Theorems

Proof.

multiplying both sides of the above equation by the integrating factor e−
∫ s
t q(ξθ,θ)dθ,

and using the Itô formula, we have

d
(
u(ξs , s)e

−
∫ s
t q(ξθ,θ)dθ

)
= −q(ξs , s)e

−
∫ s
t q(xθ,θ)dθu(ξs , s)ds + e−

∫ s
t q(ξθ,θ)dθdu(ξs , s)

= e−
∫ s
t q(ξθ,θ)dθ

(
−g(ξs , s)ds +

∂u(ξs , s)

∂x
σ2(ξs , s)dWs

)
(38)

Substituting the initial time t and terminal time T , we obtain

u(t, ξt) = f (ξT )e
−

∫ T
t q(ξθ,θ)dθ+

∫ T

t
e−

∫ s
t q(ξθ,θ)dθ

(
g(ξs , s)ds −

∂u(ξs , s)

∂x
σ2(ξs , s)dWs

)
.

Taking the expectation E(· | ξt = x) of both sides yields the desired result.
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Doob’s h-transform
Other Theorems

Given a process Xt that solves dXt = µ(t,Xt) dt + σ(t,Xt) dWt and assuming that we
want to condition its solution to hit XT at time t = T , then the h-transform provides
us with the following SDE for the conditioned process:

dX = [µ(t,Xt) + σ(t,Xt)Qσ(t,Xt)∇ log p(XT | Xt)] dt + σ(t,Xt)dWt ,
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Nelson’s Duality
Other Theorems

Let us define a forward process Xt that solves dXt = µ+(t,Xt) dt + σ(t,Xt) dWt and a
backward process Xt̃ that solves dXt̃ = µ−(t̃,Xt̃) dt̃ + σ(t̃,Xt̃) dWt̃ . We can also
define the corresponding probability measure as pt(x) and pt̃(x) respectively. Then, if
pT−t(x) = pt̃(x). The Nelson’s Duality tells us that

µ+(t, x)− µ−(t̃, x) = σ2∇x log pt̃(x) = σ2∇x log pt(x) (39)
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